If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+8X=768
We move all terms to the left:
X^2+8X-(768)=0
a = 1; b = 8; c = -768;
Δ = b2-4ac
Δ = 82-4·1·(-768)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-56}{2*1}=\frac{-64}{2} =-32 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+56}{2*1}=\frac{48}{2} =24 $
| x+4x+8x+54+45+50+42=360 | | x+4.9=8.9 | | 4.5x1.8= | | 4n-6=-2n+6n=2 | | (9/8x)-(5/16)=-(17/16x) | | 5b+30=-130+b | | n−2.7=4.74 | | 83-x+95-2x=180 | | X^2+27=-12x | | 93+46+3x+62+4x+47=360 | | 5(m+7)+8m=9 | | -11+4=-z | | -5(x–5)=14+x–7 | | 2*3^(x/4)=5*7^(1-x) | | −8x+2(8x−9)=7x+5(−6x+3) | | 2(2+3x)-5(3-x)+22=0 | | 1/2x−5=10-3/4x | | 2p/3+6=10 | | 20+5x=50+3x | | 167+151+138+133+120+115+14x+18x=1080 | | 14=2x-17 | | 3x+29=3(8)+29 | | 5x(x-1)=20 | | 1=8x-10+8=7x+2 | | 52-y=212 | | 1=8x-1+8=7x+2 | | 2(6z+2)=26 | | -4(w+1)=-4w-11 | | 8(3a+5)=9(2a-4) | | 2x-(3x-4)=2x+1 | | 8x+6=42-4x | | X²-7x-10=0 |